Customer Lifetime Value (CLV) has been the bedrock of customer relationship management. CLV helps you optimize ad spend, focus sales on high-value segments, improve retention via personalized campaigns. Using ML to analyze and predict CLV offers more accurate, actionable insights by learning from behavioral data at scale.Customer Lifetime Value (CLV) has been the bedrock of customer relationship management. CLV helps you optimize ad spend, focus sales on high-value segments, improve retention via personalized campaigns. Using ML to analyze and predict CLV offers more accurate, actionable insights by learning from behavioral data at scale.

Exploring Machine Learning Techniques for LTV/CLV Prediction

2025/10/01 10:39

The world's moving at a pace that'd make a cheetah look slow. We’re knee-deep in a tidal wave of tech advancements, radical business paradigm shifts, and full-blown cultural transformations. Trying to predict what comes next? That's the ultimate quest, and it takes more than a hunch.

In the trenches of Customer Relationship Management (CRM), there’s one number that now matters more than the rest: the lifetime value of each customer. It's not just important; it's the high-stakes game-changer.

Every business is hunting for that superior edge: better ways to mint value, refine the offer, hook the right customers, and, yes, turn a profit. For years, the Customer Lifetime Value (CLV) metric has been the bedrock, the compass guiding marketing spend and measuring overall success. Understanding the net benefit a company can realistically expect from its customer base isn't just "nice to know"; it's the key to the whole operation.

CLV has cemented itself as a cornerstone strategy because it’s a brilliant two-for-one: it reflects both the customer’s present spend and their future potential.

Forget the spreadsheets and guesswork of the past. In this piece, we’re drilling down into the nuts and bolts of how to leverage machine learning (ML) to forecast future CLV.

What is Customer Lifetime Value

To put it simply, CLV represents the total value a customer brings to a company over their entire relationship. This concept has been discussed extensively in customer relationship management literature recently. It’s calculated by multiplying the average transaction value by the number of transactions and the retention time period:

CLV = Average Transaction Value × Number of Transactions × Retention Time Period 

Let us bring some examples. Suppose you own a coffee shop where the average customer spends $5 per visit, and they visit your shop twice a week, on average, for a period of 2 years. Here’s how you would calculate the CLV:

CLV = $5 (average transaction) x 2 (visits per week) x 52 (weeks in a year) x 2 (years) = $1040 CLV 

Why it matters: CLV helps you optimize ad spend, align CAC with value, focus sales on high-value segments, improve retention via personalized campaigns, and plan revenue with realistic targets. Using ML to analyze and predict CLV offers more accurate, actionable insights by learning from behavioral data at scale.

Data model (minimal yet sufficient)

Transactions (one row per order/charge/renewal):

| userid | ts | amount | currency | channel | sku | country | isrefund | variable_cost | |----|----|----|----|----|----|----|----|----|

Users:

| userid | signupts | country | device | acquisition_source | … | |----|----|----|----|----|----|

Events (optional):

| userid | ts | eventname | metadata_json | |----|----|----|----|

Create labels & base features (leakage-safe)

We choose a prediction cutoff t₀ and horizon H (e.g., 30/90/180/365 days). All features must be computed using data up to and including t₀; labels come strictly after t₀ through t₀+H.

SQL — label and historical features

-- Parameters (set in your job): t0, horizon_days WITH tx AS (   SELECT     user_id,     ts,     CASE WHEN is_refund THEN -amount ELSE amount END AS net_amount   FROM transactions ), label AS (   SELECT user_id,          SUM(net_amount) AS y_clv_h   FROM tx   WHERE ts > TIMESTAMP(:t0)     AND ts <= TIMESTAMP_ADD(TIMESTAMP(:t0), INTERVAL :horizon_days DAY)   GROUP BY user_id ), history AS (   SELECT     user_id,     COUNT(*)                              AS hist_txn_cnt,     SUM(net_amount)                       AS hist_revenue,     AVG(net_amount)                       AS hist_aov,     MAX(ts)                               AS last_txn_ts,     MIN(ts)                               AS first_txn_ts   FROM tx   WHERE ts <= TIMESTAMP(:t0)   GROUP BY user_id ) SELECT   u.user_id,   u.country, u.device, u.acquisition_source,   h.hist_txn_cnt, h.hist_revenue, h.hist_aov,   TIMESTAMP_DIFF(:t0, h.last_txn_ts, DAY)  AS recency_days,   TIMESTAMP_DIFF(:t0, h.first_txn_ts, DAY) AS tenure_days,   COALESCE(l.y_clv_h, 0.0)                 AS label_y,   TIMESTAMP(:t0)                           AS t0 FROM users u LEFT JOIN history h USING (user_id) LEFT JOIN label   l USING (user_id); 

Python — leakage checks & quick features

import pandas as pd import numpy as np   # df has columns from the SQL above  def validate_leakage(df, t0_col="t0", last_txn_col="last_txn_ts"):     assert (df[last_txn_col] <= df[t0_col]).all(), "Leakage: found events after t0 in features"   def add_basic_features(df):     df["rfm_recency"] = df["recency_days"]     df["rfm_frequency"] = df["hist_txn_cnt"].fillna(0)     df["rfm_monetary"] = df["hist_aov"].fillna(0).clip(lower=0)     df["arpu"] = (df["hist_revenue"] / (df["tenure_days"]/30).clip(lower=1)).fillna(0)     df["log_hist_revenue"] = np.log1p(df["hist_revenue"].clip(lower=0))     return df 

\

Modeling approaches

Now let’s explore two ways to predict CLV using machine learning: by cohorts and by users.

The fundamental difference between these approaches is that in the first, we form cohorts of users based on a certain characteristic (e.g., users who registered on the same day). In the second, we do not create such groups and treat each user individually. The advantage of the first approach is that we can achieve greater prediction accuracy. But there is a downside: the thing is that we must fix the characteristic by which we group users into cohorts. In the second approach, it is generally more challenging to predict the CLV of each user accurately; however, this method allows us to analyse the predicted CLV data based on various characteristics (e.g., user’s country of origin, registration day, the advertisement they clicked on, etc.).

It is also worth mentioning that CLV predictions are rarely made without a time constraint. A user can experience several “lifetimes” throughout their lifecycle, so CLV is usually considered over a specific period, such as 30, 90, or 365 days.

By cohorts (time-series forecasting)

One of the most common ways to form user cohorts is by grouping them based on their registration day. This allows us to frame the task of predicting CLV as a time series prediction task. Essentially, our time series will represent the CLV of users over past periods, and the task will be to predict (extend) this time series into the future. This can be framed as a time-series task and extended to hierarchical models (e.g., country → region). Libraries like Nixtla offer advanced reconciliation and hierarchical tools.

# df_tx: transactions with ['user_id','ts','amount','is_refund','signup_day'] import numpy as np import pandas as pd  tx = df_tx.assign(net_amount=lambda x: np.where(x.is_refund, -x.amount, x.amount)) cohort_daily = (     tx.groupby([pd.Grouper(key="ts", freq="D"), "signup_day"]).net_amount.sum()       .rename("cohort_gmv").reset_index() ) 

Exponential Smoothing (statsmodels) as a strong baseline:

from statsmodels.tsa.holtwinters import ExponentialSmoothing  def forecast_cohort(series, steps=90):     # series: pandas Series indexed by day for one cohort     model = ExponentialSmoothing(series, trend="add", seasonal="add", seasonal_periods=7)     fit = model.fit(optimized=True, use_brute=True)     fcst = fit.forecast(steps)     return fcst 

By Users

Buy Till You Die (BTYD)

What is it? The “Buy ‘Til You Die” family models two hidden processes for each customer: (1) how often they make repeat purchases while they are alive and (2) when they drop out (churn). BG/NBD gives the expected number of future transactions and the probability a customer is still alive at any future time. Pairing it with Gamma–Gamma gives the expected spend per transaction, so multiplying the two yields a CLV forecast over a horizon.

BG/NBD in plain English

  1. Each customer has their own latent purchase rate λ (some shop often, some rarely). We assume λ varies across customers following a Gamma distribution — this heterogeneity yields a Negative Binomial model for purchase counts.
  2. After each purchase, there is a chance the customer “dies” (churns) and never buys again. That per‑customer churn probability p varies across customers following a Beta distribution (hence Beta–Geometric).
  3. Using only three summary stats per customer observed up to the cutoff t₀ — frequency (repeat purchase count), recency (time from first to most recent purchase), and T (age since first purchase) — the model estimates expected future purchases up to horizon H and probability‑alive at time t.

Pareto/NBD vs BG/NBD — BG/NBD assumes churn can only occur immediately after a purchase (simple and fast), while Pareto/NBD allows churn at any time (often fits long gaps better but is heavier to estimate).

Gamma–Gamma (monetary value) Assumes each customer has a latent average order value; given that value, their observed order amounts are Gamma distributed, with customer‑to‑customer variation captured by a Gamma prior (hence Gamma–Gamma). It further assumes spend size is independent of purchase frequency conditional on the customer—if that is badly violated, prefer a supervised model. This approach also requires frequency > 0 (at least two purchases) to estimate an average order value; otherwise backfill with a cohort AOV or a supervised prediction.

Where it shines / watch‑outs

  • Shines: cold‑start or early lifecycle, sparse data, simple pipelines, quick baselines, and explainability (probability‑alive curves).
  • Watch‑outs: assumes stationarity of purchase rate and churn over the horizon, independence of spend from frequency, needs strictly positive monetary values, and does not natively handle covariates (extend in Bayesian frameworks or segment beforehand).

Models repeat purchases & churn, and spend given a purchase. Good with sparse data and early lifecycles.

# pip install lifetimes from lifetimes import BetaGeoFitter, GammaGammaFitter from lifetimes.utils import summary_data_from_transaction_data  summary = summary_data_from_transaction_data(     transactions=df_tx, customer_id_col='user_id',     datetime_col='ts', monetary_value_col='amount',     observation_period_end=t0  # pandas Timestamp )  bgf = BetaGeoFitter(penalizer_coef=0.001).fit(     summary['frequency'], summary['recency'], summary['T'] )  ggf = GammaGammaFitter(penalizer_coef=0.001).fit(     summary['frequency'], summary['monetary_value'] )  H = 180 summary["pred_txn_H"] = bgf.conditional_expected_number_of_purchases_up_to_time(     H, summary['frequency'], summary['recency'], summary['T'] ) summary["pred_spend_given_txn"] = ggf.conditional_expected_average_profit(     summary['frequency'], summary['monetary_value'] ) summary["clv_H"] = summary["pred_txn_H"] * summary["pred_spend_given_txn"] 

Treating CLV Prediction as a Regression Task

When predicting by users, we can build a model that forecasts each customer’s CLV using signals that describe the individual—purchases, on‑site behaviour (where available), pre‑signup exposure such as the ad or campaign that led to registration, and socio‑demographic attributes. Cohort‑level information like registration day can be folded in as additional descriptors. If we frame CLV as a regression target, any supervised regressor applies; in practice, gradient‑boosted trees (XGBoost, LightGBM, CatBoost) are reliable baselines for tabular data. After establishing this baseline, you can explore richer methods. A core limitation of standard tabular models is that they do not natively model sequences even though customer data often arrives as ordered events—purchase histories, in‑app navigation paths, and marketing‑touch sequences before registration. The classic workaround compresses sequences into aggregates (averages, dispersions, inter‑purchase intervals), but this discards temporal dynamics.

# pip install lightgbm import lightgbm as lgb from sklearn.model_selection import GroupKFold from sklearn.metrics import mean_absolute_error  FEATURES = [     "rfm_recency","rfm_frequency","rfm_monetary","arpu",     "tenure_days","log_hist_revenue","country","device","acquisition_source" ]  df = add_basic_features(df).fillna(0) for c in ["country","device","acquisition_source"]:     df[c] = df[c].astype("category")  X = df[FEATURES] y = df["label_y"]  # Group by signup month or a cohort key to avoid temporal leakage gkf = GroupKFold(n_splits=5) groups = df["signup_month"]  # precomputed elsewhere  models, oof = [], np.zeros(len(df)) params = dict(objective="mae", metric="mae", learning_rate=0.05,               num_leaves=64, min_data_in_leaf=200, feature_fraction=0.8,               bagging_fraction=0.8, bagging_freq=1)  for tr, va in gkf.split(X, y, groups):     dtr = lgb.Dataset(X.iloc[tr], label=y.iloc[tr])     dva = lgb.Dataset(X.iloc[va], label=y.iloc[va])     model = lgb.train(params, dtr, valid_sets=[dtr, dva],                       num_boost_round=3000, early_stopping_rounds=200,                       verbose_eval=200)     oof[va] = model.predict(X.iloc[va])     models.append(model)  print("OOF MAE:", mean_absolute_error(y, oof)) 

You’re probably wondering: Why MAE here, and how to choose a loss? We set objective="mae" (L1) and track metric="mae" because CLV labels are typically heavy‑tailed and outlier‑prone; L1 is robust to extreme values and aligns with WAPE—the business metric many teams report. If your objective is to punish large misses more strongly for high‑value customers, use L2 (MSE/RMSE). If planning needs P50/P90 scenarios for budgets and risk, use quantile loss (objective="quantile", alpha=0.5/0.9). For dollar amounts with many zeros and a continuous positive tail (insurance‑style severity), consider Tweedie (objective="tweedie", tweedie_variance_power≈1.2–1.8). For forecasting counts (e.g., number of purchases) use Poisson. In short, pick the loss that matches how decisions are made—targets, risk tolerance, and whether you optimize absolute error, tail risk, or ranking.

How LLMs are Changing CLV Prediction

The rise of Large Language Models (LLMs) is transforming the Customer Lifetime Value (CLV) prediction process by enhancing traditional models and enabling new data-driven insights.

LLMs impact CLV prediction primarily through their ability to process and generate nuanced text data, which was previously challenging to incorporate effectively:

  • Advanced Feature Engineering: LLMs can process unstructured text data—like customer feedback, support tickets, product reviews, and interaction transcripts—to automatically generate sophisticated features (numerical representations called embeddings). These embeddings capture the semantic meaning and sentiment of interactions, providing a richer, context-aware input for traditional CLV models (e.g., regression or neural networks). This goes beyond simple Natural Language Processing (NLP) to capture deeper intent and preference.
  • Deeper Customer Segmentation and Insights: By analyzing customer communication, LLMs can help segment customers based not just on purchase history, but on their expressed attitudes, pain points, and preferences. This allows for more granular and psychologically insightful customer clusters, leading to more accurate group-based CLV predictions.
  • Simulating and Anticipating Behavior: LLMs can be used to simulate customer responses to various marketing or service initiatives. By feeding in historical customer data and proposed strategies, businesses can anticipate potential future actions and gauge their impact on CLV before implementation.
  • Proactive Retention Strategies: The insights from LLM-enhanced analysis can better identify early warning signs of churn by detecting shifts in sentiment or engagement patterns in customer interactions, enabling proactive, tailored retention efforts.

Wrapping Up

So, what's the takeaway? Implementing predictive CLV models isn't just a tech upgrade—it’s handing your business the ultimate cheat code for understanding customer potential.

By hooking into data analytics and predictive algorithms, you don't just guess; you know who your most valuable customers are. This power lets you hyper-personalize customer experiences, radically boost retention efforts, and tailor marketing campaigns with sniper-like precision. The result? You allocate resources more efficiently and maximize your ROI.

But it gets better. Predictive CLV doesn't just impact marketing. It’s a sustainable growth engine. It delivers the insights needed for optimized pricing strategies, allows for informed financial planning, and powers smarter, strategic decision-making across the board.

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Suspected $243M Crypto Hacker Arrested After Major Breakthrough in Global Heist

Suspected $243M Crypto Hacker Arrested After Major Breakthrough in Global Heist

Major breakthrough in $243M crypto heist as suspect arrested! $18.58M in crypto seized, linked to suspected hacker’s wallet. Dubai villa raid leads to possible arrest of crypto thief. A major breakthrough in the investigation into the $243 million crypto theft has emerged, as blockchain investigator ZachXBT claims that a British hacker, suspected of orchestrating one of the largest individual thefts in crypto history, may have been arrested. On December 5, ZachXBT revealed in a Telegram post that Danny (also known as Meech or Danish Zulfiqar Khan), the primary suspect behind the attack, was likely apprehended by law enforcement. ZachXBT pointed to a significant find: approximately $18.58 million worth of crypto currently sitting in an Ethereum wallet linked to the suspect. The investigator claimed that several addresses connected to Zulfiqar had consolidated funds to this address, mirroring patterns previously seen in law enforcement seizures. This discovery has raised suspicions that authorities may have closed in on the hacker. Moreover, ZachXBT mentioned that Zulfiqar was last known to be in Dubai, where it is alleged that a villa was raided, and multiple individuals associated with the hacker were arrested. He also noted that several contacts of Zulfiqar had gone silent in recent days, adding to the growing belief that law enforcement had made a major move against the hacker. However, no official statements from Dubai Police or UAE regulators have confirmed the arrest, and local media reports remain silent on the matter. Also Read: Song Chi-hyung: The Visionary Behind Upbit and the Future of Blockchain Innovation The $243 Million Genesis Creditor Heist: How the Attack Unfolded The arrest of Zulfiqar may be linked to one of the largest known individual crypto heists. In September 2024, ZachXBT uncovered that three attackers were involved in stealing 4,064 BTC (valued at $243 million at the time) from a Genesis creditor. The attack was carried out using sophisticated social engineering tactics. The hackers impersonated Google support to trick the victim into resetting two-factor authentication on their Gemini account, giving them access to the victim’s private keys. From there, they drained the wallet, moving the stolen BTC through a complex network of exchanges and swap services. ZachXBT previously identified the suspects by their online handles, “Greavys,” “Wiz,” and “Box,” later tying them to individuals Malone Lam, Veer Chetal, and Jeandiel Serrano. The U.S. Department of Justice later charged two of the suspects with orchestrating a $230 million crypto scam involving the theft. Further court documents revealed that the criminals had used a mix of SIM swaps, social engineering, and even physical burglaries to carry out the theft, spending millions on luxury items like cars and travel. ZachXBT’s tracking work has played a key role in uncovering several related thefts, including a $2 million scam in which Chetal was involved while out on bond. The news of Zulfiqar’s potential arrest could mark a significant turning point in the investigation, although full details are yet to emerge. Also Read: Kevin O’Leary Warns: Only Bitcoin and Ethereum Will Survive Crypto’s Reality Check! The post Suspected $243M Crypto Hacker Arrested After Major Breakthrough in Global Heist appeared first on 36Crypto.
Share
Coinstats2025/12/06 18:27
Breaking: CME Group Unveils Solana and XRP Options

Breaking: CME Group Unveils Solana and XRP Options

CME Group launches Solana and XRP options, expanding crypto offerings. SEC delays Solana and XRP ETF approvals, market awaits clarity. Strong institutional demand drives CME’s launch of crypto options contracts. In a bold move to broaden its cryptocurrency offerings, CME Group has officially launched options on Solana (SOL) and XRP futures. Available since October 13, 2025, these options will allow traders to hedge and manage exposure to two of the most widely traded digital assets in the market. The new contracts come in both full-size and micro-size formats, with expiration options available daily, monthly, and quarterly, providing flexibility for a diverse range of market participants. This expansion aligns with the rising demand for innovative products in the crypto space. Giovanni Vicioso, CME Group’s Global Head of Cryptocurrency Products, noted that the new options offer increased flexibility for traders, from institutions to active individual investors. The growing liquidity in Solana and XRP futures has made the introduction of these options a timely move to meet the needs of an expanding market. Also Read: Vitalik Buterin Reveals Ethereum’s Bold Plan to Stay Quantum-Secure and Simple! Rapid Growth in Solana and XRP Futures Trading CME Group’s decision to roll out options on Solana and XRP futures follows the substantial growth in these futures products. Since the launch of Solana futures in March 2025, more than 540,000 contracts, totaling $22.3 billion in notional value, have been traded. In August 2025, Solana futures set new records, with an average daily volume (ADV) of 9,000 contracts valued at $437.4 million. The average daily open interest (ADOI) hit 12,500 contracts, worth $895 million. Similarly, XRP futures, which launched in May 2025, have seen significant adoption, with over 370,000 contracts traded, totaling $16.2 billion. XRP futures also set records in August 2025, with an ADV of 6,600 contracts valued at $385 million and a record ADOI of 9,300 contracts, worth $942 million. Institutional Demand for Advanced Hedging Tools CME Group’s expansion into options is a direct response to growing institutional interest in sophisticated cryptocurrency products. Roman Makarov from Cumberland Options Trading at DRW highlighted the market demand for more varied crypto products, enabling more advanced risk management strategies. Joshua Lim from FalconX also noted that the new options products meet the increasing need for institutional hedging tools for assets like Solana and XRP, further cementing their role in the digital asset space. The launch of options on Solana and XRP futures marks another step toward the maturation of the cryptocurrency market, providing a broader range of tools for managing digital asset exposure. SEC’s Delay on Solana and XRP ETF Approvals While CME Group expands its offerings, the broader market is also watching the progress of Solana and XRP exchange-traded funds (ETFs). The U.S. Securities and Exchange Commission (SEC) has delayed its decisions on multiple crypto-related ETF filings, including those for Solana and XRP. Despite the delay, analysts anticipate approval may be on the horizon. This week, REX Shares and Osprey Funds are expected to launch an XRP ETF that will hold XRP directly and allocate at least 40% of its assets to other XRP-related ETFs. Despite the delays, some analysts believe that approval could come soon, fueling further interest in these assets. The delay by the SEC has left many crypto investors awaiting clarity, but approval of these ETFs could fuel further momentum in the Solana and XRP futures markets. Also Read: Tether CEO Breaks Silence on $117,000 Bitcoin Price – Market Reacts! The post Breaking: CME Group Unveils Solana and XRP Options appeared first on 36Crypto.
Share
Coinstats2025/09/18 02:35