The cryptocurrency market experienced a brutal 24-hour period, with liquidations surging 108% to reach $665 million. The spike in forced position closures reflects the violent price action that has characterized recent trading sessions, catching leveraged traders on both sides of the market.The cryptocurrency market experienced a brutal 24-hour period, with liquidations surging 108% to reach $665 million. The spike in forced position closures reflects the violent price action that has characterized recent trading sessions, catching leveraged traders on both sides of the market.

Liquidations Surge 108% to $665 Million as Bearish Sentiment Dominates

2025/12/16 19:30

With over half of positions now betting against the market, traders face a critical juncture: continued decline or an imminent short squeeze.

Carnage Across the Board

The cryptocurrency market experienced a brutal 24-hour period, with liquidations surging 108% to reach $665 million. The spike in forced position closures reflects the violent price action that has characterized recent trading sessions, catching leveraged traders on both sides of the market.

The $11.58 million whale liquidation on Binance reported earlier represents just one component of this broader washout. Hundreds of millions in positions have been eliminated as prices sliced through key levels.

Sentiment Shifts Bearish

Market positioning has tilted decisively negative, with 51.12% of open positions now short. This majority bearish stance reflects trader expectations of continued downside, a logical response given recent price action and the broader fear gripping the market.

The shift from bullish to bearish majority positioning often occurs near inflection points. When the crowd commits to one direction, the stage is set for violent moves in either direction—continuation if bears prove correct, or a squeeze if prices reverse.

The Short Squeeze Setup

Current positioning creates conditions favorable for a potential short squeeze. When over half the market is betting on lower prices, any sustained upward move forces short sellers to cover their positions. This covering involves buying, which pushes prices higher, triggering more short liquidations in a self-reinforcing cycle.

The 51.12% short ratio is not extreme by historical standards, but it represents a meaningful tilt. Combined with extreme fear readings and substantial recent liquidations, the market has purged many weak hands. Those remaining are predominantly positioned for further decline.

If a catalyst emerges—positive news, institutional buying, or simply exhaustion of selling pressure—the unwinding of short positions could amplify any recovery sharply.

Case for Continued Decline

Bears can point to multiple factors supporting their positioning. ETF outflows exceeding $580 million, active addresses at 12-month lows, and the Polymarket odds favoring $80,000 before $150,000 all suggest downside risk remains.

Liquidations beget liquidations. The $665 million cleared in 24 hours may have eliminated some leveraged positions, but cascading effects can persist. Each price level breached may reveal additional concentrated positions, triggering fresh waves of forced selling.

Macroeconomic uncertainty, including interest rate expectations and broader risk asset correlation, adds external pressure that cryptocurrency-specific factors cannot offset.

Case for Reversal

Contrarian indicators increasingly favor the bulls. Extreme fear readings historically precede recoveries more often than continued collapses. The liquidation flush has cleansed leveraged speculation, potentially establishing a firmer foundation.

CryptoQuant's assessment of current conditions as a potential local bottom aligns with the reversal thesis. Weak hands have been eliminated, short interest has built up, and prices have declined substantially from recent highs.

The fundamental backdrop remains constructive. Institutional adoption continues, regulatory clarity is improving under new SEC leadership, and infrastructure developments like MetaMask's Bitcoin integration expand accessibility.

Historical Patterns

Previous market cycles offer relevant precedents. Periods of extreme liquidations and bearish positioning have often marked turning points, though timing remains unpredictable.

The 2021 cycle featured multiple episodes where majority short positioning preceded sharp reversals. However, it also included periods where bearish sentiment proved justified and declines continued.

The 108% surge in liquidations suggests the current move is significant by any historical measure. Such spikes typically occur near extremes rather than in the middle of sustained trends.

What to Watch

Several indicators will help clarify whether the dip continues or reversal materializes. Funding rates across perpetual futures markets reveal whether shorts are paying to maintain positions—extreme negative funding often precedes squeezes.

ETF flow data provides insight into institutional sentiment. A shift from outflows to inflows would signal changing institutional positioning. Exchange inflows of Bitcoin may indicate holders preparing to sell, while outflows suggest accumulation.

On-chain metrics including whale wallet movements and exchange reserve changes offer additional context. The behavior of large holders during stress periods often foreshadows broader market direction.

Trading Implications

For leveraged traders, current conditions demand caution regardless of directional view. The 108% liquidation surge demonstrates how quickly positions can be eliminated. Reduced position sizes and wider stop losses provide survival margin during volatile periods.

For spot holders, the question is whether to accumulate during weakness or wait for clearer bottoming signals. Dollar-cost averaging offers a middle path, deploying capital gradually rather than attempting to time exact lows.

The majority short positioning means that being contrarian currently implies bullishness. Those willing to fade the crowd may find opportunity, but must accept the risk that bearish consensus proves correct.

Market Opportunity
SURGE Logo
SURGE Price(SURGE)
$0.03924
$0.03924$0.03924
-1.43%
USD
SURGE (SURGE) Live Price Chart
Disclaimer: The articles published on this page are written by independent contributors and do not necessarily reflect the official views of MEXC. All content is intended for informational and educational purposes only and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC. Cryptocurrency markets are highly volatile — please conduct your own research and consult a licensed financial advisor before making any investment decisions.

You May Also Like

South Korea Launches Innovative Stablecoin Initiative

South Korea Launches Innovative Stablecoin Initiative

The post South Korea Launches Innovative Stablecoin Initiative appeared on BitcoinEthereumNews.com. South Korea has witnessed a pivotal development in its cryptocurrency landscape with BDACS introducing the nation’s first won-backed stablecoin, KRW1, built on the Avalanche network. This stablecoin is anchored by won assets stored at Woori Bank in a 1:1 ratio, ensuring high security. Continue Reading:South Korea Launches Innovative Stablecoin Initiative Source: https://en.bitcoinhaber.net/south-korea-launches-innovative-stablecoin-initiative
Share
BitcoinEthereumNews2025/09/18 17:54
Trump Cancels Tech, AI Trade Negotiations With The UK

Trump Cancels Tech, AI Trade Negotiations With The UK

The US pauses a $41B UK tech and AI deal as trade talks stall, with disputes over food standards, market access, and rules abroad.   The US has frozen a major tech
Share
LiveBitcoinNews2025/12/17 01:00
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40