Neural vocoder is the final model in the Text to Speech (TTS) pipeline. It turns a mel‑spectrogram into the sound you can actually hear. WaveNet, WaveGlow, HiFi‑GAN, and FastDiff are the four contenders.Neural vocoder is the final model in the Text to Speech (TTS) pipeline. It turns a mel‑spectrogram into the sound you can actually hear. WaveNet, WaveGlow, HiFi‑GAN, and FastDiff are the four contenders.

Inside the Neural Vocoder Zoo: WaveNet to Diffusion in Four Audio Clips

2025/09/09 02:33

Hey everyone, I’m Oleh Datskiv, Lead AI Engineer at the R&D Data Unit of N-iX. Lately, I’ve been working on text-to-speech systems and, more specifically, on the unsung hero behind them: the neural vocoder.

Let me introduce you to this final step of the TTS pipeline — the part that turns abstract spectrograms into the natural-sounding speech we hear.

Introduction

If you’ve worked with text‑to‑speech in the past few years, you’ve used a vocoder - even if you didn’t notice it. The neural vocoder is the final model in the Text to Speech (TTS) pipeline; it turns a mel‑spectrogram into the sound you can actually hear.

Since the release of WaveNet in 2016, neural vocoders have evolved rapidly. They become faster, lighter, and more natural-sounding. From flow-based to GANs to diffusion, each new approach has pushed the field closer to real-time, high-fidelity speech.

2024 felt like a definitive turning point: diffusion-based vocoders like FastDiff were finally fast enough to be considered for real-time usage, not just batch synthesis as before. That opened up a range of new possibilities. The most notable ones were smarter dubbing pipelines, higher-quality virtual voices, and more expressive assistants, even if you’re not utilizing a high-end GPU cluster.

But with so many options that we now have, the questions remain:

  • How do these models sound side-by-side?
  • Which ones keep latency low enough for live or interactive use?
  • What is the best choice of a vocoder for you?

This post will examine four key vocoders: WaveNet, WaveGlow, HiFi‑GAN, and FastDiff. We’ll explain how each model works and what makes them different. Most importantly, we’ll let you hear the results of their work so you can decide which one you like better. Also, we will share custom benchmarks of model evaluation that were done through our research.

What Is a Neural Vocoder?

At a high level, every modern TTS system still follows the same basic path:

\ Let’s quickly go over what each of these blocks does and why we are focusing on the vocoder today:

  1. Text encoder: It changes raw text or phonemes into detailed linguistic embeddings.
  2. Acoustic model: This stage predicts how the speech should sound over time. It turns linguistic embeddings into mel spectrograms that show timing, melody, and expression. It has two critical sub-components:
  3. Alignment & duration predictor: This component determines how long each phoneme should last, ensuring the rhythm of speech feels natural and human
  4. Variance/prosody adaptor: At this stage, the adaptor injects pitch, energy, and style, shaping the melody, emphasis, and emotional contour of the sentence.
  5. Neural vocoder: Finally, this model converts the prosody-rich mel spectrogram into actual sound, the waveform we can hear.

The vocoder is where good pipelines live or die. Map mels to waveforms perfectly, and the result is a studio-grade actor. Get it wrong, and even with the best acoustic model, you will get metallic buzz in the generated audio. That’s why choosing the right vocoder matters - because they’re not all built the same. Some optimize for speed, others for quality. The best models balance naturalness, speed, and clarity.

The Vocoder Lineup

Now, let's meet our four contenders. Each represents a different generation of neural speech synthesis, with its unique approach to balancing the trade-offs between audio quality, speed, and model size. The numbers below are drawn from the original papers. Thus, the actual performance will vary depending on your hardware and batch size. We will share our benchmark numbers later in the article for a real‑world check.

  1. WaveNet (2016): The original fidelity benchmark

Google's WaveNet was a landmark that redefined audio quality for TTS. As an autoregressive model, it generates audio one sample at a time, with each new sample conditioned on all previous ones. This process resulted in unprecedented naturalness at the time (MOS=4.21), setting a "gold standard" that researchers still benchmark against today. However, this sample-by-sample approach also makes WaveNet painfully slow, restricting its use to offline studio work rather than live applications.

  1. WaveGlow (2019): Leap to parallel synthesis

To solve WaveNet's critical speed problem, NVIDIA's WaveGlow introduced a flow-based, non-autoregressive architecture. Generating the entire waveform in a single forward pass drastically reduced inference time to approximately 0.04 RTF, making it much faster than in real time. While the quality is excellent (MOS≈3.961), it was considered a slight step down from WaveNet's fidelity. Its primary limitations are a larger memory footprint and a tendency to produce a subtle high-frequency hiss, especially with noisy training data.

  1. HiFi-GAN (2020): Champion of efficiency

HiFi-GAN marked a breakthrough in efficiency using a Generative Adversarial Network (GAN) with a clever multi-period discriminator. This architecture allows it to produce extremely high-fidelity audio (MOS=4.36), which is competitive with WaveNet, but is fast from a remarkably small model (13.92 MB). It's ultra-fast on a GPU (<0.006×RTF) and can even achieve real-time performance on a CPU, which is why HiFi-GAN quickly became the default choice for production systems like chatbots, game engines, and virtual assistants.

  1. FastDiff (2025): Diffusion quality at real-time speed

Proving that diffusion models don't have to be slow, FastDiff represents the current state-of-the-art in balancing quality and speed. Pruning the reverse diffusion process to as few as four steps achieves top-tier audio quality (MOS=4.28) while maintaining fast speeds for interactive use (~0.02×RTF on a GPU). This combination makes it one of the first diffusion-based vocoders viable for high-quality, real-time speech synthesis, opening the door for more expressive and responsive applications.

Each of these models reflects a significant shift in vocoder design. Now that we've seen how they work on paper, it's time to put them to the test with our own benchmarks and audio comparisons.

\n Let’s Hear It — A/B Audio Gallery

Nothing beats your ears!

We will use the following sentences from the LJ Speech Dataset to test our vocoders. Later in the article, you can also listen to the original audio recording and compare it with the generated one.

Sentences:

  1. “A medical practitioner charged with doing to death persons who relied upon his professional skill.”
  2. “Nothing more was heard of the affair, although the lady declared that she had never instructed Fauntleroy to sell.”
  3. “Under the new rule, visitors were not allowed to pass into the interior of the prison, but were detained between the grating.”

The metrics we will use to evaluate the model’s results are listed below. These include both objective and subjective metrics:

  • Naturalness (MOS): How human-like does it sound (rated by real people on a 1/5 scale)
  • Clarity (PESQ / STOI): Objective scores that help measure intelligibility and noise/artifacts. The higher, the better.
  • Speed (RTF): An RTF of 1 means it takes 1 second to generate 1 second of audio. For anything interactive, you’ll want this at 1 or below

Audio Players

(Grab headphones and tap the buttons to hear each model.)

| Sentence | Ground truth | WaveNet | WaveGlow | HiFi‑GAN | FastDiff | |----|:---:|:---:|:---:|:---:|:---:| | S1 | ▶️ | ▶️ | ▶️ | ▶️ | ▶️ | | S2 | ▶️ | ▶️ | ▶️ | ▶️ | ▶️ | | S3 | ▶️ | ▶️ | ▶️ | ▶️ | ▶️ |

\n Quick‑Look Metrics

Here, we will show you the results obtained for the models we evaluate.

| Model | RTF ↓ | MOS ↑ | PESQ ↑ | STOI ↑ | |----|:---:|:---:|:---:|:---:| | WaveNet | 1.24 | 3.4 | 1.0590 | 0.1616 | | WaveGlow | 0.058 | 3.7 | 1.0853 | 0.1769 | | HiFi‑GAN | 0.072 | 3.9 | 1.098 | 0.186 | | FastDiff | 0.081 | 4.0 | 1.131 | 0.19 |

\n *For the MOS evaluation, we used voices from 150 participants with no background in music.

** As an acoustic model, we used Tacotron2 for WaveNet and WaveGlow, and FastSpeech2 for HiFi‑GAN and FastDiff.

\n Bottom line

Our journey through the vocoder zoo shows that while the gap between speed and quality is shrinking, there’s no one-size-fits-all solution. Your choice of a vocoder in 2025 and beyond should primarily depend on your project's needs and technical requirements, including:

  • Runtime constraints (Is it an offline generation or a live, interactive application?)
  • Quality requirements (What’s a higher priority: raw speed or maximum fidelity?)
  • Deployment targets (Will it run on a powerful cloud GPU, a local CPU, or a mobile device?)

As the field progresses, the lines between these choices will continue to blur, paving the way for universally accessible, high-fidelity speech that is heard and felt.

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Stijgt XRP koers boven $2,28 door buy zone indicator en groeiende whale activiteit?

Stijgt XRP koers boven $2,28 door buy zone indicator en groeiende whale activiteit?

XRP laat in de laatste 24 uur een koersdaling zien van bijna 4%. Hierdoor staat de markt opnieuw stil bij de manier waarop Ripple zijn infrastructuur voor wereldwijde liquiditeit uitbreidt. De afronding van de GTreasury overname zorgt immers voor een nieuwe fase in de integratie van blockchain in traditionele financiële processen. De vraag is hoe de XRP koers hier in de komende periode op kan reageren. Check onze Discord Connect met "like-minded" crypto enthousiastelingen Leer gratis de basis van Bitcoin & trading - stap voor stap, zonder voorkennis. Krijg duidelijke uitleg & charts van ervaren analisten. Sluit je aan bij een community die samen groeit. Nu naar Discord GTreasury integratie brengt nieuw liquiditeitsmodel voor ondernemingen Ripple heeft GTreasury voor ongeveer $1 miljard gekocht. GTreasury levert al veertig jaar software voor treasury management en werkt wereldwijd voor meer dan 800 bedrijven. Het bedrijf is verbonden met naar schatting 13.000 financiële instellingen en verwerkt jaarlijks een groot volume aan betalingen. Al deze transactiestromen worden nu gekoppeld aan Ripple technologie zodat ondernemingen realtime betalingen kunnen uitvoeren met blockchain liquidity zonder een crypto wallet nodig te hebben. In de praktijk betekent dit dat bedrijven hun bestaande betaalsoftware blijven gebruiken. De afhandeling vindt nu op de achtergrond plaats via Ripple infrastructuur. Deze toegankelijkheid lost een veelvoorkomend probleem op in traditionele bedrijfsprocessen. Grote ondernemingen willen wel profiteren van snelle settlement, maar ze willen geen interne wijziging doorvoeren in hun systemen of compliance structuren. Door de GTreasury integratie ontstaat er een laag die beide werelden verbindt. Deze overname maakt deel uit van het bredere institutionele plan voor 2025. Ripple nam eerder Rail, Palisade en Ripple Prime over. Daarmee ontstaat één platform voor bedrijven die sneller willen afrekenen en hun liquiditeitsrisico lager willen houden. Volgens Reece Merrick van Ripple richten deze overnames zich op concrete knelpunten waar CFO’s wereldwijd mee te maken hebben. Bedrijven werken vaak met versnipperde systemen die traag zijn en veel handmatige controle vereisen. Ripple wil dit proces graag moderniseren met asset backed liquidity en een uniform settlement netwerk. Here’s Ripple’s one-stop shop visualized! Huge day now that GTreasury acquisition is closed! As you can see GTreasury is connected to 13 thousand banks with an annual volume of $12.5 Trillion. Remember that Ripple has a pending bank license and has applied for a FED master… https://t.co/EWqVYGku2p pic.twitter.com/onoSdjuuYv — Anders (@X__Anderson) December 5, 2025 Welke crypto nu kopen?Lees onze uitgebreide gids en leer welke crypto nu kopen verstandig kan zijn! Welke crypto nu kopen? De langste government shutdown in de geschiedenis van de VS is eindelijk achter de rug. Dat zorgt ervoor dat er eindelijk weer vooruitgang geboekt kan worden. Dit is erg bullish voor crypto, en dus gaan wereldberoemde traders ineens all-in op altcoins als XRP. Eén vraag komt telkens terug: welke crypto moet… Continue reading Stijgt XRP koers boven $2,28 door buy zone indicator en groeiende whale activiteit? document.addEventListener('DOMContentLoaded', function() { var screenWidth = window.innerWidth; var excerpts = document.querySelectorAll('.lees-ook-description'); excerpts.forEach(function(description) { var excerpt = description.getAttribute('data-description'); var wordLimit = screenWidth wordLimit) { var trimmedDescription = excerpt.split(' ').slice(0, wordLimit).join(' ') + '...'; description.textContent = trimmedDescription; } }); }); XRP koers krijgt steun door groeiende institutionele vraag De institutionele belangstelling voor XRP neemt in meerdere regio’s toe. Verschillende rapporten tonen echter dat de verkoopdruk in de rest van de markt niet terugkomt bij XRP producten. Europese investeerders hebben in 2025 ongeveer $549 miljoen aan XRP producten toegevoegd. Dit ligt hoger dan de instroom in Ethereum producten en ruim boven het recente herstel van Solana. Buiten de Verenigde Staten kwam ongeveer $252 miljoen in XRP producten terecht. Deze instroom ligt dicht bij de instroom in Bitcoin producten, ondanks dat Bitcoin een veel grotere markt heeft. Relatief gezien kopen instellingen daarmee aanzienlijk meer XRP tokens dan Bitcoin. In de Verenigde Staten groeide de instroom in de synthetische XRP producten naar ongeveer $241 miljoen. Dit is de grootste instroom voor alle altcoins in de regio. Onderzoekers melden daarnaast dat de XRP ETF’s op één dag meer dan $50 miljoen aan nieuwe instroom kregen. Hierdoor komen de totale spot assets dicht bij de grens van $1 miljard. Volgens crypto-analisten houdt een deel van de whales XRP vast als langetermijn allocatie. Ook bedrijven kunnen XRP aan hun treasury toevoegen. Dit kan op termijn de circulerende voorraad beïnvloeden, omdat er dan minder XRP tokens actief op de markt komen. $XRP ETFs just added $50.27M IN ONE DAY. Total assets now $906M — about to cross $1B. Whales buying spot. Corporations stacking XRP as treasury allocations. ETFs scaling inflows. Price hasn’t moved yet, but the supply is thinning behind the scenes. The XRP supply shock is… pic.twitter.com/ICe4RDQimg — Ripple Bull Winkle | Crypto Researcher (@RipBullWinkle) December 5, 2025 Crypto-analisten houden XRP koers nauwlettend in de gaten rond cruciale prijszones Crypto-analist Ali meldt dat XRP zich momenteel in een buyzone bevindt op basis van de TD Sequential indicator. Deze indicator laat om de paar candles mogelijke omkeerpunten zien op basis van vaste tellingen. Volgens Ali is $2,28 een belangrijke weerstandszone. Wanneer de XRP koers deze zone overtuigend doorbreekt, ontstaat er volgens hem ruimte richting hogere prijsniveaus zoals $2,75. EGRAG CRYPTO zegt dat veel investeerders de structurele veranderingen rond Ripple technologie niet volledig in hun analyse meenemen. Volgens hem ontwikkelen de liquiditeitsoplossingen voor bedrijven zich sneller dan veel mensen zich beseffen. Daardoor verschuift het marktsentiment rond XRP met regelmaat zodra er nieuwe onderdelen van de infrastructuur worden uitgerold. $XRP is a buy, according to the TD Sequential. pic.twitter.com/uI9s9Qwu6Y — Ali (@ali_charts) December 5, 2025 Vooruitblik op de volgende fase voor XRP De koppeling tussen GTreasury en Ripple technologie maakt het eenvoudiger voor bedrijven om zonder technische aanpassingen blockchain liquidity te gebruiken. Dit versterkt het institutionele fundament onder XRP en breidt de rol van het crypto token verder uit in internationale betalingsstromen. Crypto-analisten volgen vooral de reactie rond de weerstandszone bij $2,28 en de instroom in XRP producten. Deze twee factoren bepalen voor een groot deel hoe de markt het nieuwe liquiditeitsmodel waardeert. Best wallet - betrouwbare en anonieme wallet Best wallet - betrouwbare en anonieme wallet Meer dan 60 chains beschikbaar voor alle crypto Vroege toegang tot nieuwe projecten Hoge staking belongingen Lage transactiekosten Best wallet review Koop nu via Best Wallet Let op: cryptocurrency is een zeer volatiele en ongereguleerde investering. Doe je eigen onderzoek. Het bericht Stijgt XRP koers boven $2,28 door buy zone indicator en groeiende whale activiteit? is geschreven door Dirk van Haaster en verscheen als eerst op Bitcoinmagazine.nl.
Share
Coinstats2025/12/06 16:16